India’s Energy Crisis
February 06, 2016
Can India modernize its manufacturing economy and supply electricity to its growing population without relying heavily on coal—and quite possibly destroying the global climate?
It’s a huge task. At least 300 million of India’s 1.25 billion people live without electricity. Another quarter-billion or so get only spotty power from India’s decrepit grid, finding it available for as little as three or four hours a day. The lack of power affects rural and urban areas alike, limiting efforts to advance both living standards and the country’s manufacturing sector.
Already the world’s third-largest emitter of carbon dioxide and other greenhouse gases, India is attempting to do something no nation has ever done: build a modern industrialized economy, and bring light and power to its entire population, without dramatically increasing carbon emissions. Simply to keep up with rising demand for electricity, it must add around 15 gigawatts each year over the next 30 years. The country gets most of its electricity from aging, dirty coal-fired plants. (It has little domestic production of oil or natural gas.) And its energy infrastructure is in dismal shape. The obsolescence of its power grid was demonstrated by a massive 2012 outage that left more than 600 million people in the dark and drew attention to a utility sector in disarray, with an estimated $70 billion of accumulated debt.
If current trends continue and India follows the traditional path in which emissions increase as living standards rise, it will be disastrous not only for Indians but for the entire planet. By way of illustration, consider what’s happened in China. From 1980 to 2010, while the country’s per capita GDP grew by $193, to $4,514, its emissions per capita grew from 1.49 tons per year to more than six tons per year (these figures come from the World Bank and the CAIT Climate Data Explorer, maintained by the World Resources Institute). China is now the world’s largest emitter of carbon. India’s per capita emissions as of 2012, the last year for which figures are available, were 1.68 tons per year, and its 2014 GDP was $1,631 per person. Its population is expected to grow by another 400 million people over the next three decades, bringing it to 1.7 billion by 2050. If India follows a path similar to China’s, that will add another eight billion tons of carbon to the atmosphere each year—more than total U.S. emissions in 2013.
Such growth would easily swamp efforts elsewhere in the world to curtail carbon emissions, dooming any chance to head off the dire effects of global climate change. (Overall, the world will need to reduce its current annual emissions of 40 billion tons by 40 to 70 percent between now and 2050.) By 2050, India will have roughly 20 percent of the world’s population. If those people rely heavily on fossil fuels such as coal to expand the economy and raise their living standards to the level people in the rich world have enjoyed for the last 50 years, the result will be a climate catastrophe regardless of anything the United States or even China does to decrease its emissions. Reversing these trends will require radical transformations in two main areas:
how India produces electricity, and how it distributes it.
Power losses in transmission and distribution across India average around 25 percent, and in some areas they can reach 50 percent. That means that half of the electricity being generated either never reaches an end user or is used but never paid for. Power losses in the developed world seldom reach 10 percent. For a grid about to be tested by the addition of large amounts of power from intermittent renewable sources, that outdated infrastructure is a huge problem.
It’s compounded by the fact that so many of India’s citizens aren’t on the grid at all (no count is precise, but the number is probably somewhere between 300 million and 400 million). Not only do power lines fail to reach many rural areas, but many of those living in city slums are also without utility services (often they simply cannot afford the estimated $105 it takes to connect to the grid, even if such connections are available). The Power Grid Corporation of India operates more than 70,000 miles of transmission lines that stretch across most of the subcontinent. What had been five regional grids have been united into a single national system that reaches to within a few miles of most of the population, a process completed in 2013. The grid’s transmission connections between regions remain inadequate, however—this was the primary cause of the 2012 blackout—and India’s switching and control technology has been little upgraded in the last two decades.
What’s more, the buildup of generation capacity in the last decade has not been matched by investments in power lines and substations. India’s grid operator plans to spend one trillion rupees ($15 billion) over the next few years to add nine new high-capacity transmission corridors.
Excerpts from MIT Technology Review : India's Energy Crisis by Richard Martin October 7, 2015
0 comments